skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Kaslow, Sarah_R"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Pulmonary air leak is the most common complication of lung surgery, contributing to post‐operative morbidity in up to 60% of patients; yet, there is no reliable treatment. Available surgical sealants do not match the demanding deformation mechanics of lung tissue; and therefore, fail to seal air leak. To address this therapeutic gap, a sealant with structural and mechanical similarity to subpleural lung is designed, developed, and systematically evaluated. This “lung‐mimetic” sealant is a hydrofoam material that has alveolar‐like porous ultrastructure, lung‐like viscoelastic properties (adhesive, compressive, tensile), and lung extracellular matrix‐derived signals (matrikines) to support tissue repair. In biocompatibility testing, the lung‐mimetic sealant shows minimal cytotoxicity and immunogenicity in vitro. Human primary monocytes exposed to sealant matrikines in vitro upregulate key genes (MARCO, PDGFB, VEGF) known to correlate with pleural wound healing and tissue repair in vivo. In rat and swine models of pulmonary air leak, this lung‐mimetic sealant rapidly seals air leak and restores baseline lung mechanics. Altogether, these data indicate that the lung‐mimetic sealant can effectively seal pulmonary air leak and promote a favorable cellular response in vitro. 
    more » « less